Low-valent Titanium Induced Reductive Coupling Reaction of Carboxylic Derivatives with Aromatic Ketones

Da-qing Shi, Jian-xie Chen, Wen-ying Chai, Wei-xing Chen^{*} and Tsi-yu Kao Department of Chemistry, Nanjing University, Nanjing, 210008, China

Abstract: The intermolecular and intramolecular coupling reaction of carboxylic derivaties with aromatic ketones induced by titanium tetrachloride and zinc powder was studied.

We recently reported that the low-valent titanium reagent induced intermolecular reductive coupling reactions of nitro compounds with nitriles¹ and carbonyl compounds with nitriles². We now describe the coupling reaction of carboxylic derivatives with aromatic ketones by treatment with titanium tetrachloride and zinc in tetrahydrofuran at refluxing temperature.

When an acyl chloride (1) and aromatic ketone (2) were treated with $TiCl_4$ -Zn, the cross coupling product ketone (3) was obtained along with an olefin(4) the self-reductive coupling product of ketones. The self-reductive coupling product of carboxylic derivatives was not obtained. The same outcome was also found in the cross coupling of aromatic ketone with an ester. Aliphatic ketones failed to give similar ketone products under the same conditions.

$$\begin{array}{cccc} O & O & TiCl_4-Zn & O \\ R^1-C-X + R^2-C-R^3 & \hline & & & & \\ \hline & & & & & \\ 1 & 2 & & & & \\ 1 & 2 & & & & \\ \end{array} > R^1-C-CHR^2R^3 + R^2R^3C = CR^2R^3$$

1		2		IsolatedYield(%)	
x	R ¹	R ²	R ³	3	4
Cl	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	68.6	24.1
Cl	4–ClC ₆ H₄	C ₆ H ₅	C ₆ H ₅	52.2	27.1
Cl	3–ClC ₆ H ₄	C₅H,	C ₆ H ₅	47.8	21.1
Cl	3-CH ₃ C ₆ H ₄	C ₆ H ₅	C ₆ H ₅	60.6	18.1
Cl	4–CH ₃ OC ₆ H ₄	C₅H₅	C ₆ H ₅	66.7	30.1
Cl	CH3	C₅H₅	C ₆ H ₅	69.8	15.1
OC₂H₅	C₅H₅	C ₆ H,	C ₆ H ₅	46.6	30.1
OC ₂ H ₅	C ₆ H ₅ CH ₂	C₅H₅	C ₆ H ₅	49.0	18.1
OC ₂ H ₅	1-C ₁₀ H ₇ CH ₂	C₅H₅	4–ClC ₆ H ₄	70.3	20.7
OC ₂ H ₅	1-C ₁₀ H ₇ CH ₂	C ₆ H ₅	C ₆ H ₅	66.7	24.0
OC ₂ H,	1-C ₁₀ H ₇ CH ₂	C ₆ H ₅	4–CH ₃ C ₆ H ₄	48.6	29.6
OC ₂ H ₅	1-C ₁₀ H ₇ CH ₂	C ₆ H5	4–CH ₃ OC ₆ H ₄	44.4	25.5

Table: $TiCl_4$ / Zn induced reductive coupling of ketones with acyl chlorides or esters.

The mechanism of this titanium-induced intermolecular coupling reaction of carboxylic derivative with aromatic ketone appears to be an exact analogue of the keto ester cyclization³. In the initial step, an eletron is transferred from titanium to the carbonyl group generating a radical anion, the ketyl radical then dimerizes to yield olefin or attacks carboxylic derivative to yield the cross coupling product ketone.

However, treatment of benzophenone and formic ester under the same reaction condition afforded 1,1,3,3-tetraphenyl propylene and tetraphenyl ethylene.

We could also obtain diketone (6) from a diacyl chloride or a dicarboxylic ester and two equivalents of aromatic ketone under the same reaction conditions.

Ŭ -Ċ-R⁴Ċ-X	$\mathbf{X} + \mathbf{R}^2 - \mathbf{C} - \mathbf{R}^3 - \mathbf{R}^3$	$\frac{1.11Cl_4-2n}{2.28(11Cl_4-2n)}$	> $R^4(-C-CHR^2R$	$(R^3)_2 + R^2 R^3 C$	=CR ² R ³
5	2	2. 3% HCi	6	4	
x <u>5</u>	R ⁴	R ²	2 R ³	Isolated 6	Yield(%) 4
Cl	1,4-C ₆ H ₄	C₅H₅	C ₆ H ₅	40.7	38.6
OC H	(CH.)	C.H.	C.H.	50.5	28.5

On the other hand, the reaction of keto-diester (7) with the same reagent afforded the cyclic β -keto-ester in good yields. Compound 7 can be prepared easily from α,β -unsaturated ketone and malonic ester.⁴

. O	1. TiCl ₄ –Zn	្អ	7		8
R ³ CHCHCR ⁶	<u> </u>	R ⁶ CO ₂ Et	R ⁵	R ⁶	Yield(%)
ĊH(CO ₂ Et) ₂	2. 3% HCl	Υ Ι	C ₆ H ₅	C ₆ H ₅	81
		R ⁵	C ₆ H ₅	4-CH ₃ C ₆ H ₄	87
			3,4Cl ₂ C ₆ H ₃	4-CH ₃ C ₆ H ₄	78
7		8			

Acknowledgement: We thank the National Natural Science Foundation of China for the financial support.

References:

- 1. Jian-xie Chen, Wen-ying Chai, Ji-lin Zhu, Ju Gao, Wei-xing Chen, Tsi-yu Kao Synthesis, 1992(in press)
- 2. Ju Gao, Ming-yang Hu, Jian-xie Chen, Su Yuan, Wei-xing Chen Tetrahedron Lett., 1992(in press)
- 3. McMurry, J. E., Miller, D. D. J. Am. Chem. Soc. 1983, 105, 1660.
- 4. Connor, R., Andrews, D. B. J. Am. Chem. Soc., 1934, 56, 2713.

(Received in China 7 July 1992)